Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(9)2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33619096

RESUMO

The pathogenic consequences of 369 unique human HsMLH1 missense variants has been hampered by the lack of a detailed function in mismatch repair (MMR). Here single-molecule images show that HsMSH2-HsMSH6 provides a platform for HsMLH1-HsPMS2 to form a stable sliding clamp on mismatched DNA. The mechanics of sliding clamp progression solves a significant operational puzzle in MMR and provides explicit predictions for the distribution of clinically relevant HsMLH1 missense mutations.


Assuntos
Neoplasias Colorretais Hereditárias sem Polipose/genética , Reparo de Erro de Pareamento de DNA , Proteínas de Ligação a DNA/genética , DNA/genética , Proteína 1 Homóloga a MutL/genética , Proteína 2 Homóloga a MutS/genética , Mutação de Sentido Incorreto , Sítios de Ligação , Neoplasias Colorretais Hereditárias sem Polipose/metabolismo , Neoplasias Colorretais Hereditárias sem Polipose/patologia , DNA/química , DNA/metabolismo , Dano ao DNA , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Humanos , Modelos Moleculares , Proteína 1 Homóloga a MutL/química , Proteína 1 Homóloga a MutL/metabolismo , Proteína 2 Homóloga a MutS/química , Proteína 2 Homóloga a MutS/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas
2.
Biochemistry ; 59(51): 4822-4832, 2020 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-33319999

RESUMO

DNA mismatch repair (MMR) is an important postreplication process that eliminates mispaired or unpaired nucleotides to ensure genomic replication fidelity. In humans, Msh2-Msh6 and Msh2-Msh3 are the two mismatch repair initiation factors that recognize DNA lesions. While X-ray crystal structures exist for these proteins in complex with DNA lesions, little is known about their structures during the initial search along nonspecific double-stranded DNA, because they are short-lived and difficult to determine experimentally. In this study, various computational approaches were used to sidestep these difficulties. All-atom and coarse-grained simulations based on the crystal structures of Msh2-Msh3 and Msh2-Msh6 showed no translation along the DNA, suggesting that the initial search conformation differs from the lesion-bound crystal structure. We modeled probable search-mode structures of MSH proteins and showed, using coarse-grained molecular dynamics simulations, that they can perform rotation-coupled diffusion on DNA, which is a suitable and efficient search mechanism for their function and one predicted earlier by fluorescence resonance energy transfer and fluorescence microscopy studies. This search mechanism is implemented by electrostatic interactions among the mismatch-binding domain (MBD), the clamp domains, and the DNA backbone. During simulations, their diffusion rate did not change significantly with an increasing salt concentration, which is consistent with observations from experimental studies. When the gap between their DNA-binding clamps was increased, Msh2-Msh3 diffused mostly via the clamp domains while Msh2-Msh6 still diffused using the MBD, reproducing the experimentally measured lower diffusion coefficient of Msh2-Msh6. Interestingly, Msh2-Msh3 was capable of dissociating from the DNA, whereas Msh2-Msh6 always diffused on the DNA duplex. This is consistent with the experimental observation that Msh2-Msh3, unlike Msh2-Msh6, can overcome obstacles such as nucleosomes. Our models provide a molecular picture of the different mismatch search mechanisms undertaken by Msh2-Msh6 and Msh2-Msh3, despite the similarity of their structures.


Assuntos
Reparo de Erro de Pareamento de DNA , Proteínas de Ligação a DNA/metabolismo , DNA/metabolismo , Proteína 2 Homóloga a MutS/metabolismo , Proteína 3 Homóloga a MutS/metabolismo , Proteínas de Ligação a DNA/química , Difusão , Humanos , Simulação de Dinâmica Molecular , Proteína 2 Homóloga a MutS/química , Proteína 3 Homóloga a MutS/química , Ligação Proteica , Conformação Proteica , Eletricidade Estática
3.
Proc Natl Acad Sci U S A ; 117(28): 16302-16312, 2020 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-32586954

RESUMO

DNA mismatch repair (MMR) corrects errors that occur during DNA replication. In humans, mutations in the proteins MutSα and MutLα that initiate MMR cause Lynch syndrome, the most common hereditary cancer. MutSα surveilles the DNA, and upon recognition of a replication error it undergoes adenosine triphosphate-dependent conformational changes and recruits MutLα. Subsequently, proliferating cell nuclear antigen (PCNA) activates MutLα to nick the error-containing strand to allow excision and resynthesis. The structure-function properties of these obligate MutSα-MutLα complexes remain mostly unexplored in higher eukaryotes, and models are predominately based on studies of prokaryotic proteins. Here, we utilize atomic force microscopy (AFM) coupled with other methods to reveal time- and concentration-dependent stoichiometries and conformations of assembling human MutSα-MutLα-DNA complexes. We find that they assemble into multimeric complexes comprising three to eight proteins around a mismatch on DNA. On the timescale of a few minutes, these complexes rearrange, folding and compacting the DNA. These observations contrast with dominant models of MMR initiation that envision diffusive MutS-MutL complexes that move away from the mismatch. Our results suggest MutSα localizes MutLα near the mismatch and promotes DNA configurations that could enhance MMR efficiency by facilitating MutLα nicking the DNA at multiple sites around the mismatch. In addition, such complexes may also protect the mismatch region from nucleosome reassembly until repair occurs, and they could potentially remodel adjacent nucleosomes.


Assuntos
Reparo de Erro de Pareamento de DNA , Proteínas de Ligação a DNA/metabolismo , DNA/metabolismo , Proteínas MutL/metabolismo , Proteína 2 Homóloga a MutS/metabolismo , Trifosfato de Adenosina/metabolismo , DNA/química , DNA/genética , Proteínas de Ligação a DNA/química , Humanos , Complexos Multiproteicos/metabolismo , Proteínas MutL/química , Proteína 2 Homóloga a MutS/química , Conformação de Ácido Nucleico , Nucleossomos/metabolismo , Dobramento de Proteína , Multimerização Proteica
4.
J Biomol Struct Dyn ; 38(3): 771-780, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-30806579

RESUMO

The missense mutation in the mismatch repair gene MSH2 underlies in several hereditary cancers. In this study, we have detailed the disruptive mutation of G322D that overtly pathogenic and clinically relevant to the triple negative breast cancer (TNBC) on the basis of structural aspect to untangle the unknown factors. We systematically evaluated the conformational changes that undergo upon mutation from the annotation of intra-residual contacts, secondary structural arrangements and fold recognition through molecular dynamics simulation. At first, we interpreted the total of 88 intra-molecular interaction which is required minimally to maintain the native structural architecture. Adequately, the molecular dynamics approach is well contributed toward structural modification that takes places in C-terminal linking 290-294(L20), 339-347(L23-T16- α9-T17) and 373-395(α12-T19-20-L26-T21-L27-T22) in contrast to native 290-294(ß8), 339-347(T20-α9-T21-α10), 373-395(α12-T19-20-L26-T21-L27-T22) provides a straightforward evidence that is underpinning destabilization and protein misfolding. Eventually, we have highlighted the structural debilitation of G322D in the core region of 303-309 L23-T18-α6 - L21- α8, and 326-330 α7-T19-L25 -α9 notably the connecting elements of secondary structural propensity (loop-helix) in folding pack were completely abrupted which helps to keep native form. Essentially, the information gained in our study on residual interaction and conformational transitions in the structure of mutant MSH2 provides valuable insights to understand the clues of functional behavior and also pave the way to frame suitable and improved therapeutical targets.Communicated by Ramaswamy H. Sarma.


Assuntos
Proteína 2 Homóloga a MutS/genética , Mutação/genética , Neoplasias de Mama Triplo Negativas/genética , Humanos , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Proteína 2 Homóloga a MutS/química , Proteínas Mutantes/química , Análise de Componente Principal , Estabilidade Proteica , Reprodutibilidade dos Testes , Termodinâmica
5.
Int J Gynecol Pathol ; 39(6): 507-513, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31855955

RESUMO

Immunohistochemistry for mismatch repair proteins MLH1, MSH2, MSH6, and PMS2 is an effective screen to detect individuals at risk for Lynch syndrome. College of American Pathologists guidelines stipulate that protein expression should be reported as present versus absent, as most patients with germline mutations in a mismatch repair gene have complete loss of protein expression in tumor cells. A similar approach is employed to screen for cancer patients eligible for immune checkpoint blockade. This "all or none" interpretive approach ignores substantial evidence that mismatch repair may be more finely regulated by other mechanisms. We have observed clinically that MSH6 expression is variable, even in carcinomas that are overall considered positive for MSH6 expression. A proof-of-principle study was therefore designed to more rigorously quantify the protein expression of MSH6 and its binding partner, MSH2, using image analysis applied to age-matched endometrioid grade 2 subsets that were either mismatch repair intact or MLH1-deficient due to MLH1 gene methylation. In both endometrioid groups, MSH6 expression was significantly lower than MSH2 expression. MSH6 expression increased in higher grade, mismatch repair intact serous carcinomas, but it was still significantly lower than that for MSH2. MSH2 expression was consistently high across the 3 different tumor groups. These results suggest that MSH6 expression is subject to wide fluctuations in expression, even when overall its expression is considered intact. While such fluctuations are likely not relevant for Lynch syndrome screening, they may be more impactful when considering patients eligible for immune checkpoint blockade.


Assuntos
Metilação de DNA/genética , Reparo de Erro de Pareamento de DNA/genética , Proteínas de Ligação a DNA/genética , Neoplasias do Endométrio/genética , Proteína 1 Homóloga a MutL/genética , Idoso , Carcinoma Endometrioide/genética , Carcinoma Endometrioide/patologia , Neoplasias Colorretais Hereditárias sem Polipose/genética , Proteínas de Ligação a DNA/análise , Neoplasias do Endométrio/química , Neoplasias do Endométrio/patologia , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Pessoa de Meia-Idade , Proteína 2 Homóloga a MutS/análise , Proteína 2 Homóloga a MutS/química , Proteína 2 Homóloga a MutS/genética
6.
Int J Mol Sci ; 20(17)2019 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-31480444

RESUMO

The mismatch repair (MMR) pathway maintains genome integrity by correcting errors such as mismatched base pairs formed during DNA replication. In MMR, Msh2-Msh6, a heterodimeric protein, targets single base mismatches and small insertion/deletion loops for repair. By incorporating the fluorescent nucleoside base analog 6-methylisoxanthopterin (6-MI) at or adjacent to a mismatch site to probe the structural and dynamic elements of the mismatch, we address how Msh2-Msh6 recognizes these mismatches for repair within the context of matched DNA. Fluorescence quantum yield and rotational correlation time measurements indicate that local base dynamics linearly correlate with Saccharomyces cerevisiae Msh2-Msh6 binding affinity where the protein exhibits a higher affinity (KD ≤ 25 nM) for mismatches that have a significant amount of dynamic motion. Energy transfer measurements measuring global DNA bending find that mismatches that are both well and poorly recognized by Msh2-Msh6 experience the same amount of protein-induced bending. Finally, base-specific dynamics coupled with protein-induced blue shifts in peak emission strongly support the crystallographic model of directional binding, in which Phe 432 of Msh6 intercalates 3' of the mismatch. These results imply an important role for local base dynamics in the initial recognition step of MMR.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteína 2 Homóloga a MutS/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Pareamento Incorreto de Bases , DNA Fúngico/genética , DNA Fúngico/metabolismo , Proteínas de Ligação a DNA/química , Modelos Moleculares , Proteína 2 Homóloga a MutS/química , Ligação Proteica , Conformação Proteica , Multimerização Proteica , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química
7.
Hum Mutat ; 40(11): 2044-2056, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31237724

RESUMO

Lynch syndrome (LS) predisposes patients to cancer and is caused by germline mutations in the DNA mismatch repair (MMR) genes. Identifying the deleterious mutation, such as a frameshift or nonsense mutation, is important for confirming an LS diagnosis. However, discovery of a missense variant is often inconclusive. The effects of these variants of uncertain significance (VUS) on disease pathogenesis are unclear, though understanding their impact on protein function can help determine their significance. Laboratory functional studies performed to date have been limited by their artificial nature. We report here an in-cellulo functional assay in which we engineered site-specific MSH2 VUS using clustered regularly interspaced short palindromic repeats-Cas9 gene editing in human embryonic stem cells. This approach introduces the variant into the endogenous MSH2 loci, while simultaneously eliminating the wild-type gene. We characterized the impact of the variants on cellular MMR functions including DNA damage response signaling and the repair of DNA microsatellites. We classified the MMR functional capability of eight of 10 VUS providing valuable information for determining their likelihood of being bona fide pathogenic LS variants. This human cell-based assay system for functional testing of MMR gene VUS will facilitate the identification of high-risk LS patients.


Assuntos
Sistemas CRISPR-Cas , Neoplasias Colorretais Hereditárias sem Polipose/diagnóstico , Neoplasias Colorretais Hereditárias sem Polipose/genética , Edição de Genes , Células-Tronco Embrionárias Humanas/metabolismo , Proteína 2 Homóloga a MutS/genética , Mutação de Sentido Incorreto , Linhagem Celular Tumoral , Dano ao DNA , Reparo do DNA , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Instabilidade de Microssatélites , Modelos Moleculares , Proteína 2 Homóloga a MutS/química , Conformação Proteica , Transdução de Sinais
8.
Adv Protein Chem Struct Biol ; 115: 325-350, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30798936

RESUMO

The DNA repair system is crucial to repair the error resulting in DNA replication. MSH2-MSH6 protein complex plays a significant role in maintaining the mismatch repair mechanism. Mutations in the interface between the two proteins compromise their function in the repair process. The present study aims to understand the impact of missense mutations in the interacting sites of the MSH2-MSH6 protein complex. MSH6 is unstable due to the disordered N-terminal domain. This is stabilized by the MSH2 hetero-dimerization. We used pathogenicity and stability predictors to identify the missense mutations that could be more pathogenic with the destabilizing property. The mutations W764C of MSH2, and L1201F and G1316E of MSH6 were predicted to be highly deleterious and destabilizing by all the in silico predictors. The dynamic motion of the native and mutant (W764C) MSH2-MSH6 protein complexes was further investigated using Molecular Dynamics Simulations of the GROMACS package. The Root Mean Square Deviation (RMSD), Radius of Gyration (Rg), and change in a number of intramolecular hydrogen bonds (H-bonds) were analyzed using the embedded packages of GROMACS. From the simulation studies, we observed higher deviation, lower protein compactness, and a decrease in the number of intramolecular hydrogen bonds in the mutant W764C MSH2-MSH6 protein complex. The observed results from the computational methods suggest the involvement of higher structural impact on the MSH2-MSH6 protein complex upon W764C mutation could affect the DNA repair mechanism.


Assuntos
Reparo do DNA , Proteínas de Ligação a DNA/química , DNA/metabolismo , Simulação de Dinâmica Molecular , Proteína 2 Homóloga a MutS/química , DNA/genética , Proteínas de Ligação a DNA/metabolismo , Humanos , Proteína 2 Homóloga a MutS/metabolismo , Ligação Proteica
9.
J Biol Chem ; 293(47): 18055-18070, 2018 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-30237169

RESUMO

DNA mismatch repair (MMR) corrects mispaired DNA bases and small insertion/deletion loops generated by DNA replication errors. After binding a mispair, the eukaryotic mispair recognition complex Msh2-Msh6 binds ATP in both of its nucleotide-binding sites, which induces a conformational change resulting in the formation of an Msh2-Msh6 sliding clamp that releases from the mispair and slides freely along the DNA. However, the roles that Msh2-Msh6 sliding clamps play in MMR remain poorly understood. Here, using Saccharomyces cerevisiae, we created Msh2 and Msh6 Walker A nucleotide-binding site mutants that have defects in ATP binding in one or both nucleotide-binding sites of the Msh2-Msh6 heterodimer. We found that these mutations cause a complete MMR defect in vivo The mutant Msh2-Msh6 complexes exhibited normal mispair recognition and were proficient at recruiting the MMR endonuclease Mlh1-Pms1 to mispaired DNA. At physiological (2.5 mm) ATP concentration, the mutant complexes displayed modest partial defects in supporting MMR in reconstituted Mlh1-Pms1-independent and Mlh1-Pms1-dependent MMR reactions in vitro and in activation of the Mlh1-Pms1 endonuclease and showed a more severe defect at low (0.1 mm) ATP concentration. In contrast, five of the mutants were completely defective and one was mostly defective for sliding clamp formation at high and low ATP concentrations. These findings suggest that mispair-dependent sliding clamp formation triggers binding of additional Msh2-Msh6 complexes and that further recruitment of additional downstream MMR proteins is required for signal amplification of mispair binding during MMR.


Assuntos
Trifosfato de Adenosina/metabolismo , Reparo de Erro de Pareamento de DNA , Proteínas de Ligação a DNA/metabolismo , Proteína 2 Homóloga a MutS/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Cristalografia por Raios X , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteína 1 Homóloga a MutL/genética , Proteína 1 Homóloga a MutL/metabolismo , Proteína 2 Homóloga a MutS/química , Proteína 2 Homóloga a MutS/genética , Ligação Proteica , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
10.
PLoS Biol ; 15(4): e2001164, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28453523

RESUMO

Crossing over between homologs is initiated in meiotic prophase by the formation of DNA double-strand breaks that occur throughout the genome. In the major interference-responsive crossover pathway in baker's yeast, these breaks are resected to form 3' single-strand tails that participate in a homology search, ultimately forming double Holliday junctions (dHJs) that primarily include both homologs. These dHJs are resolved by endonuclease activity to form exclusively crossovers, which are critical for proper homolog segregation in Meiosis I. Recent genetic, biochemical, and molecular studies in yeast are consistent with the hypothesis of Mlh1-Mlh3 DNA mismatch repair complex acting as the major endonuclease activity that resolves dHJs into crossovers. However, the mechanism by which the Mlh1-Mlh3 endonuclease is activated is unknown. Here, we provide evidence that Mlh1-Mlh3 does not behave like a structure-specific endonuclease but forms polymers required to generate nicks in DNA. This conclusion is supported by DNA binding studies performed with different-sized substrates that contain or lack polymerization barriers and endonuclease assays performed with varying ratios of endonuclease-deficient and endonuclease-proficient Mlh1-Mlh3. In addition, Mlh1-Mlh3 can generate religatable double-strand breaks and form an active nucleoprotein complex that can nick DNA substrates in trans. Together these observations argue that Mlh1-Mlh3 may not act like a canonical, RuvC-like Holliday junction resolvase and support a novel model in which Mlh1-Mlh3 is loaded onto DNA to form an activated polymer that cleaves DNA.


Assuntos
DNA Cruciforme/metabolismo , Endonuclease PMS2 de Reparo de Erro de Pareamento/metabolismo , Proteína 1 Homóloga a MutL/metabolismo , Proteínas MutL/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Substituição de Aminoácidos , Quebras de DNA de Cadeia Dupla , DNA Circular/química , DNA Circular/metabolismo , DNA Cruciforme/química , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Ativação Enzimática , Humanos , Hidrólise , Endonuclease PMS2 de Reparo de Erro de Pareamento/química , Endonuclease PMS2 de Reparo de Erro de Pareamento/genética , Peso Molecular , Proteína 1 Homóloga a MutL/química , Proteína 1 Homóloga a MutL/genética , Proteínas MutL/química , Proteínas MutL/genética , Proteína 2 Homóloga a MutS/química , Proteína 2 Homóloga a MutS/genética , Proteína 3 Homóloga a MutS , Mutação , Antígeno Nuclear de Célula em Proliferação/genética , Antígeno Nuclear de Célula em Proliferação/metabolismo , Multimerização Proteica , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteína de Replicação C/genética , Proteína de Replicação C/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Especificidade por Substrato
11.
PLoS Genet ; 13(4): e1006739, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28422960

RESUMO

Accurate methods to assess the pathogenicity of mutations are needed to fully leverage the possibilities of genome sequencing in diagnosis. Current data-driven and bioinformatics approaches are, however, limited by the large number of new variations found in each newly sequenced genome, and often do not provide direct mechanistic insight. Here we demonstrate, for the first time, that saturation mutagenesis, biophysical modeling and co-variation analysis, performed in silico, can predict the abundance, metabolic stability, and function of proteins inside living cells. As a model system, we selected the human mismatch repair protein, MSH2, where missense variants are known to cause the hereditary cancer predisposition disease, known as Lynch syndrome. We show that the majority of disease-causing MSH2 mutations give rise to folding defects and proteasome-dependent degradation rather than inherent loss of function, and accordingly our in silico modeling data accurately identifies disease-causing mutations and outperforms the traditionally used genetic disease predictors. Thus, in conclusion, in silico biophysical modeling should be considered for making genotype-phenotype predictions and for diagnosis of Lynch syndrome, and perhaps other hereditary diseases.


Assuntos
Neoplasias Colorretais Hereditárias sem Polipose/genética , Proteínas de Ligação a DNA/genética , Proteína 2 Homóloga a MutS/genética , Dobramento de Proteína , Neoplasias Colorretais Hereditárias sem Polipose/diagnóstico , Neoplasias Colorretais Hereditárias sem Polipose/patologia , Simulação por Computador , Proteínas de Ligação a DNA/química , Estudos de Associação Genética , Predisposição Genética para Doença , Genoma Humano , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Instabilidade de Microssatélites , Proteína 2 Homóloga a MutS/química , Mutação de Sentido Incorreto/genética , Conformação Proteica
12.
Mol Cell Proteomics ; 15(4): 1299-308, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27037360

RESUMO

The mismatch repair (MMR) family is a highly conserved group of proteins that function in correcting base-base and insertion-deletion mismatches generated during DNA replication. Disruption of this process results in characteristic microsatellite instability (MSI), repair defects, and susceptibility to cancer. However, a significant fraction of MSI-positive cancers express MMR genes at normal levels and do not carry detectable mutation in known MMR genes, suggesting that additional factors and/or mechanisms may exist to explain these MSI phenotypes in patients. To systematically investigate the MMR pathway, we conducted a proteomic analysis and identified MMR-associated protein complexes using tandem-affinity purification coupled with mass spectrometry (TAP-MS) method. The mass spectrometry data have been deposited to the ProteomeXchange with identifier PXD003014 and DOI 10.6019/PXD003014. We identified 230 high-confidence candidate interaction proteins (HCIPs). We subsequently focused on MSH2, an essential component of the MMR pathway and uncovered a novel MSH2-binding partner, WDHD1. We further demonstrated that WDHD1 forms a stable complex with MSH2 and MSH3 or MSH6,i.e.the MutS complexes. The specific MSH2/WDHD1 interaction is mediated by the second lever domain of MSH2 and Ala(1123)site of WDHD1. Moreover, we showed that, just like MSH2-deficient cells, depletion of WDHD1 also led to 6-thioguanine (6-TG) resistance, indicating that WDHD1 likely contributes to the MMR pathway. Taken together, our study uncovers new components involved in the MMR pathway, which provides candidate genes that may be responsible for the development of MSI-positive cancers.


Assuntos
Reparo de Erro de Pareamento de DNA , Proteínas de Ligação a DNA/metabolismo , Neoplasias/metabolismo , Proteômica/métodos , Espectrometria de Massas em Tandem/métodos , Sítios de Ligação , Proteínas de Ligação a DNA/química , Células HEK293 , Células HeLa , Humanos , Proteína 2 Homóloga a MutS/química , Proteína 2 Homóloga a MutS/metabolismo , Proteína 3 Homóloga a MutS , Ligação Proteica
13.
DNA Repair (Amst) ; 38: 117-126, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26774442

RESUMO

Expanded tandem repeat sequences in DNA are associated with at least 40 human genetic neurological, neurodegenerative, and neuromuscular diseases. Repeat expansion can occur during parent-to-offspring transmission, and arise at variable rates in specific tissues throughout the life of an affected individual. Since the ongoing somatic repeat expansions can affect disease age-of-onset, severity, and progression, targeting somatic expansion holds potential as a therapeutic target. Thus, understanding the factors that regulate this mutation is crucial. DNA repair, in particular mismatch repair (MMR), is the major driving force of disease-associated repeat expansions. In contrast to its anti-mutagenic roles, mammalian MMR curiously drives the expansion mutations of disease-associated (CAG)·(CTG) repeats. Recent advances have broadened our knowledge of both the MMR proteins involved in disease repeat expansions, including: MSH2, MSH3, MSH6, MLH1, PMS2, and MLH3, as well as the types of repeats affected by MMR, now including: (CAG)·(CTG), (CGG)·(CCG), and (GAA)·(TTC) repeats. Mutagenic slipped-DNA structures have been detected in patient tissues, and the size of the slip-out and their junction conformation can determine the involvement of MMR. Furthermore, the formation of other unusual DNA and R-loop structures is proposed to play a key role in MMR-mediated instability. A complex correlation is emerging between tissues showing varying amounts of repeat instability and MMR expression levels. Notably, naturally occurring polymorphic variants of DNA repair genes can have dramatic effects upon the levels of repeat instability, which may explain the variation in disease age-of-onset, progression and severity. An increasing grasp of these factors holds prognostic and therapeutic potential.


Assuntos
Reparo de Erro de Pareamento de DNA/genética , Doença/genética , Instabilidade Genômica , Expansão das Repetições de Trinucleotídeos/genética , Animais , Sequência de Bases , Humanos , Dados de Sequência Molecular , Proteína 2 Homóloga a MutS/química , Proteína 2 Homóloga a MutS/metabolismo , Polimorfismo Genético
14.
Mol Cell ; 59(5): 831-9, 2015 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-26300262

RESUMO

DNA mismatch repair (MMR) is an evolutionarily conserved process that corrects DNA polymerase errors during replication to maintain genomic integrity. In E. coli, the DNA helicase UvrD is implicated in MMR, yet an analogous helicase activity has not been identified in eukaryotes. Here, we show that mammalian MCM9, a protein involved in replication and homologous recombination, forms a complex with MMR initiation proteins (MSH2, MSH3, MLH1, PMS1, and the clamp loader RFC) and is essential for MMR. Mcm9-/- cells display microsatellite instability and MMR deficiency. The MCM9 complex has a helicase activity that is required for efficient MMR since wild-type but not helicase-dead MCM9 restores MMR activity in Mcm9-/- cells. Moreover, MCM9 loading onto chromatin is MSH2-dependent, and in turn MCM9 stimulates the recruitment of MLH1 to chromatin. Our results reveal a role for MCM9 and its helicase activity in mammalian MMR.


Assuntos
Reparo de Erro de Pareamento de DNA/fisiologia , Proteínas de Manutenção de Minicromossomo/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Sequência de Bases , Cromatina/genética , Cromatina/metabolismo , DNA/genética , DNA/metabolismo , DNA Helicases/química , DNA Helicases/genética , DNA Helicases/metabolismo , Reparo de Erro de Pareamento de DNA/genética , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Técnicas de Inativação de Genes , Células HeLa , Humanos , Instabilidade de Microssatélites , Proteínas de Manutenção de Minicromossomo/deficiência , Proteínas de Manutenção de Minicromossomo/genética , Proteína 1 Homóloga a MutL , Proteína 2 Homóloga a MutS/química , Proteína 2 Homóloga a MutS/genética , Proteína 2 Homóloga a MutS/metabolismo , Proteína 3 Homóloga a MutS , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo
15.
Mol Cell ; 59(4): 603-14, 2015 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-26212458

RESUMO

Ataxia telangiectasia-mutated and Rad3-related (ATR) protein kinase, a master regulator of DNA-damage response, is activated by RPA-coated single-stranded DNA (ssDNA) generated at stalled replication forks or DNA double-strand breaks (DSBs). Here, we identify the mismatch-binding protein MutSß, a heterodimer of MSH2 and MSH3, as a key player in this process. MSH2 and MSH3 form a complex with ATR and its regulatory partner ATRIP, and their depletion compromises the formation of ATRIP foci and phosphorylation of ATR substrates in cells responding to replication-associated DSBs. Purified MutSß binds to hairpin loop structures that persist in RPA-ssDNA complexes and promotes ATRIP recruitment. Mutations in the mismatch-binding domain of MSH3 abolish the binding of MutSß to DNA hairpin loops and its ability to promote ATR activation by ssDNA. These results suggest that hairpin loops might form in ssDNA generated at sites of DNA damage and trigger ATR activation in a process mediated by MutSß.


Assuntos
Quebras de DNA de Cadeia Dupla , Proteínas de Ligação a DNA/fisiologia , Proteína 2 Homóloga a MutS/fisiologia , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Reparo do DNA , DNA de Cadeia Simples/química , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Ativação Enzimática , Células HEK293 , Recombinação Homóloga , Humanos , Proteína 2 Homóloga a MutS/química , Proteína 3 Homóloga a MutS , Fosforilação , Ligação Proteica , Processamento de Proteína Pós-Traducional , Transporte Proteico
16.
Biophys J ; 106(11): 2483-92, 2014 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-24896128

RESUMO

In eukaryotes, the recognition of the DNA postreplication errors and initiation of the mismatch repair is carried out by two MutS homologs: MutSα and MutSß. MutSα recognizes base mismatches and 1 to 2 unpaired nucleotides whereas MutSß recognizes longer insertion-deletion loops (IDLs) with 1 to 15 unpaired nucleotides as well as certain mismatches. Results from molecular dynamics simulations of native MutSß:IDL-containing DNA and MutSα:mismatch DNA complexes as well as complexes with swapped DNA substrates provide mechanistic insight into how the differential substrate specificities are achieved by MutSα and MutSß, respectively. Our simulations results suggest more extensive interactions between MutSß and IDL-DNA and between MutSα and mismatch-containing DNA that suggest corresponding differences in stability. Furthermore, our simulations suggest more expanded mechanistic details involving a different degree of bending when DNA is bound to either MutSα or MutSß and a more likely opening of the clamp domains when noncognate substrates are bound. The simulation results also provide detailed information on key residues in MutSß and MutSα that are likely involved in recognizing IDL-DNA and mismatch-containing DNA, respectively.


Assuntos
Pareamento Incorreto de Bases , Proteínas de Ligação a DNA/química , DNA/química , Proteína 2 Homóloga a MutS/química , Sequência de Aminoácidos , Sequência de Bases , DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Humanos , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Proteína 2 Homóloga a MutS/metabolismo , Proteína 3 Homóloga a MutS , Ligação Proteica , Estrutura Terciária de Proteína , Especificidade por Substrato
17.
DNA Repair (Amst) ; 21: 111-9, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24811920

RESUMO

The MutS2 homologues have been found widespread in most prokaryotes, which are involved in DNA repair and reactive oxygen species detoxification. The C-terminal small mutS-related (Smr) domain is critical for its endonucleolytic activity. However, the detailed catalytic mechanism is still unclear. In this study, we first investigated the in vivo role of drMutS2 in Deinococcus radiodurans, the most radiation-resistant organism exhibits the remarkable DNA repair capacity. mutS2 and recA mutS2 double knockout mutants were constructed because the phenotype was strongly masked by the predominant homologous recombination DNA repair pathway in this bacterium. Compared with the recA mutant, cells devoid of both genes showed increased sensitivity to ionizing radiation and oxidative agents, suggesting that drMutS2 is involved in RecA-independent mechanisms that enhance cellular resistance to oxidative stress-induced DNA damage. Moreover, the basal level of reductase activity and thiamine biosynthesis was induced in the absence of mutS2. To characterize its catalytic residues, the Smr domain was crystallized and soaked in buffer containing manganese ions. In contrast to native crystals, the space group of manganese-derivative crystals transformed from monoclinic to orthorhombic unexpectedly. This type of crystals showed improved diffraction resolution to 1.2 Å, which has the highest resolution of currently known Smr structures. Structural comparison revealed that three acidic amino-acid residues, which are all located in the α1 helix, changed the rotamer states after metal soaking. Mutational analysis of conserved residue glutamic acid 710 to alanine yielded a drMutS2 variant with impaired nuclease activity, and could only partially rescue the radiosensitive phenotype of the mutS2 null strain, indicating that glutamic acid 710 is the catalytic residue.


Assuntos
Proteínas de Bactérias/química , Deinococcus/enzimologia , Proteína 2 Homóloga a MutS/química , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Dano ao DNA , Deinococcus/genética , Deinococcus/metabolismo , Dados de Sequência Molecular , Proteína 2 Homóloga a MutS/genética , Proteína 2 Homóloga a MutS/metabolismo , Estresse Oxidativo , Tolerância a Radiação , Recombinases Rec A/genética , Recombinases Rec A/metabolismo
18.
DNA Repair (Amst) ; 18: 18-30, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24746922

RESUMO

In Saccharomyces cerevisiae, Msh2-Msh3-mediated mismatch repair (MMR) recognizes and targets insertion/deletion loops for repair. Msh2-Msh3 is also required for 3' non-homologous tail removal (3'NHTR) in double-strand break repair. In both pathways, Msh2-Msh3 binds double-strand/single-strand junctions and initiates repair in an ATP-dependent manner. However, we recently demonstrated that the two pathways have distinct requirements with respect to Msh2-Msh3 activities. We identified a set of aromatic residues in the nucleotide binding pocket (FLY motif) of Msh3 that, when mutated, disrupted MMR, but left 3'NHTR largely intact. One of these mutations, msh3Y942A, was predicted to disrupt the nucleotide sandwich and allow altered positioning of ATP within the pocket. To develop a mechanistic understanding of the differential requirements for ATP binding and/or hydrolysis in the two pathways, we characterized Msh2-Msh3 and Msh2-msh3Y942A ATP binding and hydrolysis activities in the presence of MMR and 3'NHTR DNA substrates. We observed distinct, substrate-dependent ATP hydrolysis and nucleotide turnover by Msh2-Msh3, indicating that the MMR and 3'NHTR DNA substrates differentially modify the ATP binding/hydrolysis activities of Msh2-Msh3. Msh2-msh3Y942A retained the ability to bind DNA and ATP but exhibited altered ATP hydrolysis and nucleotide turnover. We propose that both ATP and structure-specific repair substrates cooperate to direct Msh2-Msh3-mediated repair and suggest an explanation for the msh3Y942A separation-of-function phenotype.


Assuntos
Trifosfato de Adenosina/metabolismo , Reparo de Erro de Pareamento de DNA , DNA Fúngico/química , DNA Fúngico/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteína 2 Homóloga a MutS/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Domínio Catalítico , Quebras de DNA de Cadeia Dupla , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Hidrólise , Cinética , Proteína 2 Homóloga a MutS/química , Proteína 2 Homóloga a MutS/genética , Proteína 3 Homóloga a MutS , Mutação , Fenótipo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Especificidade por Substrato
19.
Proc Natl Acad Sci U S A ; 111(3): E316-25, 2014 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-24395779

RESUMO

High fidelity homologous DNA recombination depends on mismatch repair (MMR), which antagonizes recombination between divergent sequences by rejecting heteroduplex DNA containing excessive nucleotide mismatches. The hMSH2-hMSH6 heterodimer is the first responder in postreplicative MMR and also plays a prominent role in heteroduplex rejection. Whether a similar molecular mechanism underlies its function in these two processes remains enigmatic. We have determined that hMSH2-hMSH6 efficiently recognizes mismatches within a D-loop recombination initiation intermediate. Mismatch recognition by hMSH2-hMSH6 is not abrogated by human replication protein A (HsRPA) bound to the displaced single-stranded DNA (ssDNA) or by HsRAD51. In addition, ATP-bound hMSH2-hMSH6 sliding clamps that are essential for downstream MMR processes are formed and constrained within the heteroduplex region of the D-loop. Moreover, the hMSH2-hMSH6 sliding clamps are stabilized on the D-loop by HsRPA bound to the displaced ssDNA. Our findings reveal similarities and differences in hMSH2-hMSH6 mismatch recognition and sliding-clamp formation between a D-loop recombination intermediate and linear duplex DNA.


Assuntos
Reparo de Erro de Pareamento de DNA , Proteínas de Ligação a DNA/química , DNA/química , Proteína 2 Homóloga a MutS/química , Recombinação Genética , Difosfato de Adenosina/química , Trifosfato de Adenosina/química , Pareamento Incorreto de Bases , Biotinilação , Humanos , Hidrólise , Cinética , Ligação Proteica , Estrutura Terciária de Proteína , Rad51 Recombinase/química , Proteína de Replicação A/química
20.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 30(5): 559-64, 2013 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-24078570

RESUMO

OBJECTIVE: To construct a hMSH2/hMSH6 protein interaction system, and to use it for evaluating missense mutations detected in hMSH2 gene. METHODS: Recombinant plasmids pGADT7-hMSH2, pGBKT7-hMSH6 and 7 recombinant pGBKT7 plasmids with different hMSH6 domains were constructed through genetic engineering. Subsequently, site-directed mutagenesis was used to construct 10 mutant pGADT7-hMSH2 plasmids, which were transformed into yeast AH109. The growth of transformants was observed on a histidine-deficient culture. RESULTS: Both hMSH6 MutSII-V and MutSIII-V could interact with hMSH2 in yeast AH109. Yeast two-hybrid transformants pGADT7-hMSH2/pGBKT7-hMSH6 MutSII-V were used to construct a hMSH2/hMSH6 protein interaction system. Compared with wild-type hMSH2, yeast two-hybrid transformants c.505A>G, c.1168C>T, c.1255C>A, c.1261C>A could grow normally, c.1223A>G, c.1886A>G, c.2108C>A and c.2516A>G grew slowly, c.518T>G and c.1664 delA could not grow in a histidine-deficient medium in yeast AH109. CONCLUSION: A hMSH2/hMSH6 protein interaction system has been constructed with yeast two-hybrid system, which has been used for functional evaluation of hMSH2 gene missense mutations. c.518T>G is a pathological mutation. c.1223A>G, c.1886A>G, c.2108C>A, c.2516A>G may in part affect the hMSH2 function. And c.505A>G, c.1168C>T, c.1255C>A, c.1261C>A were innocuous variants.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteína 2 Homóloga a MutS/genética , Proteína 2 Homóloga a MutS/metabolismo , Mutação de Sentido Incorreto , Técnicas do Sistema de Duplo-Híbrido , Motivos de Aminoácidos , Sequência de Bases , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Humanos , Dados de Sequência Molecular , Proteína 2 Homóloga a MutS/química , Ligação Proteica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...